

From shape-controlled nanoparticles to "colloidal molecules"

Prof Etienne DUGUET

Institut de Chimie de la Matière Condensée de Bordeaux

Colloids: Towards higher complexity and functionality

Colloidal stability

Size

Size-polydispersity

Chemical composition

Surface groups

Shape

Self-assembling ability

"spherical colloids can be treated as if they were atoms"

Wang and Keddy, Adv. Colloid Interf. Sci. 2009 147–148,319

Colloids: Towards higher complexity and functionality

Colloidal stability

Size

Size-polydispersity

Chemical composition

Surface groups

Shape

Self-assembling ability

"spherical colloids can be treated as if they were atoms" and "molecules form more complex materials than do atoms"

Van Blaaderen, Science 2003 301, 470

Colloidal Molecules

Photonic crystals with full bandgap

fcc or hcp structure \rightarrow no full photonic bandgap

Template-directed self-assembly route

2 μm

2 μm

Combined effect of geometrical confinement and attractive capillary forces

Yin and Xia, *Adv. Mater.* **2001** 13, 267 Yin, Lu and Xia, *J. Am. Chem. Soc.* **2001** 123, 771

Emulsion-confined self-assembly route

Manoharan, Elsesser and Pine, *Science* **2003** 301, 483 Pine and coll., *Adv. Mater.* **2004** 16, 1204 scale bar : 1 µm

the controlled surface nucleation/growth of PS latex particles onto silica seeds

Emulsion polymerization background

Styrene emulsion polymerization

Our polymerization system

Monomer : styrene

Surfactant : NP30

Initiator : $Na_2S_2O_8$ $S_2O_8^2 \xrightarrow{\Delta} 2 SO_4^{-\circ}$

experimental Styrene emulsion polymerization [styrene] = 100 g/L[NP30] = 20*CMC $[Na_2S_2O_8] = 0.5 \text{ g/L}$ $T = 70^{\circ}C$ 90 300 80 250 70 60 200 $(D_n)_{\text{TEM}}$ monomernumberto-polymer 50 average conversion 150 diameter 40 % of latex nm 30 100 20 50 [m - m_{si}] * 100 10 %_{conv} m_{monomer} 0 - 0 1000 1500 0 500 time *min*

What happens in the presence of Stöber silica

Stöber and coll., *Colloid Interface Sci.* **1968**, 26, 62 Kang and coll., *Polymer* **2001** 42, 879

time : 120 min conversion ~20 % scale bar : 200 nm

Macromonomer pre-adsorption onto Stöber silica

$$H_{3}C \underbrace{\downarrow}_{CH_{2}} O - CH_{2} - CH_{2} O - CH_{3} n \sim 23$$

[styrene] = 100 g/L [NP30] = 20*CMC [Na₂S₂O₈] = 0.5 g/L T = 70°C

500-nm silica
[silica] = 10 g/L
[macrom.] = 0.1 g/L
conversion
$$\sim$$
30 %

raspberry-like silica/PS particles

Duguet and coll, Chem. Mater. 2002 14, 2354

Influence of silica concentration: $N_{PS/Si} = N_{PS} / N_{Si}$?

<u>experimental</u> [styrene] = 100 g/L

[NP30] = 20*CMC $[Na_2S_2O_8] = 0.5 g/L$ T = 70°C

[macrom.] = 0.1 g/L

N_{Si}/N_{PS} = 1 silica 64 nm [silica] = 4.6 g/L

30 min

60 min

120 min

scale bar : 100 nm

N_{Si}/N_{PS} = 1/2 silica 93 nm [silica] = 7.5 g/L

 $N_{Si}/N_{PS} = 1/6$ silica 127 nm [silica] = 4.8 g/L

60 min scale bar : 500 nm

Influence of silica size ($N_{Si} \ll N_{PS}$)

experimental

idem

Influence of silica size $(N_{Si} < N_{PS})$

Duguet and coll., J. Mater. Chem. 2009 in press

idem

experimental

Are our colloids really planar?

Duguet and coll., J. Mater. Chem. 2009 in press

8

10

silica 170 nm

silica 212 nm

[silica] = 4.7 g/L

25 min

20 min

[silica] = 4.7 g/L

silica 170 nm [silica] = 4.7 g/L25 min

Electronic tomography

acquisition of tilt series from -60° to +60° every 2°

3D-reconstruction from these projections

Duguet and coll., J. Mater. Chem. 2009 in press

silica 170 nm [silica] = 4.7 g/L25 min

Electronic tomography

Silane surface treatment of "Stöber" silica

 $-OC_2H_5$ methacryloxymethyltriethoxysilane (MMS)

Silane-saturated surface

50 nm

scale bar: 200 nm

 $\frac{experimental}{[styrene] = 100 g/L}$ [NP30] = 20*CMC $[Na_2S_2O_8] = 0.5 g/L$ T = 70°C

 $[silica] = 10 \text{ g/L} \\ [silane] = 16.6 \ \mu\text{mol/m}^2 \\ \text{conversion} \sim 20 \ \%$

About (D_n)_{Si} and N_{PS/Si} correlation

Minimization of the energy of n points whose positions are unconstrained on the surface of a sphere:

$$E_{P} = \sum_{i}^{n} \frac{1}{2} |x_{i}|^{2} - \sum_{i}^{n} \sum_{j < i} x_{ij}$$

attraction towards the centre of the sphere

particle repulsions

Battye et al., J. Math. Phys. 2003 44, 3532

About $(D_n)_{Si}$ and $\overline{N_{PS/Si}}$ correlation

scale bar : 200 nm

Cryo-TEM / tomography for nucleation/growth study

A 0 min B 5 min C 10 min D 20 min E 30 min 40 min G 50 min

scale bar : 100 nm

Cryo-TEM / tomography for nucleation/growth study

Duguet and coll, Soft Mater. 2008 4, 311

Cryo-TEM / tomography for nucleation/growth study

Duguet and coll, Soft Mater. 2008 4, 311

Cryo-TEM / tomography for nucleation/growth study

Wetting efficiency of the growing latex particle towards the inorganic core /etting

Summary

Hybrid structured nanoparticles with original 3-D morphologies

Cryo-TEM / tomography is a powerful characterization tool

Efforts in progress

High yields of regular morphologies

Complete bestiary of colloidal molecules made of a single central atom

Study of colloid interactions

Colloid packing into photonic crystals

Acknowledgements

Adeline Perro, Stéphane Reculusa, David Nguyen and Anthony Désert Serge Ravaine *(CRPP/Bordeaux)* Elodie Bourgeat-Lami *(LCPP/Villeurbanne)* Olivier Lambert and Jean-Christophe Taveau *(IECB/Bordeaux)* Elisabeth Sellier and Michel Martineau *(CREMEN/Bordeaux)*

