

RuO₂@SiO₂ as catalytic filters for gas sensors

Dr. Y. Guari

UMR 5253 - CNRS, UM2, ENSCM, UM1

Nanomaterials exhibiting optic and magnetic properties.

Corriu, R. J. P. . et al. *Chem. Commun.* **2001**, 763, Corriu, R. J. P. et al. *Chem. Commun.* **2001**, 1116, Porcherie, O. et al. *New J. Chem.* **2005**, *29*, 538. $In_2O_3@SiO_2$

Guari, Y. et al. New J. Chem. 2003, 27, 1374

Guari, Y. et al. *Chem. Commun.* **2001**, 1374, Guari, Y. et al. *Chem. Mater.* **2003**, *15*, 2017, Besson, E. et al. *Chem. Commun.* **2005**, 1775.

Fe₃O₄@SiO₂ Matsura, V. et al. *J. Mater. Chem.* **2004**, *14*, 3026.

Mn₃O₄@SiO₂ Matsura, V. et al. *J. Mater. Chem.* **2004**, *14*, 2703.

NiFe@SiO₂ Folch, B. et al. *J. Mater. Chem.* **2006**, *16*, 4435.

First route towards RuO₂@SiO₂ nanomaterials

Séne

First route towards RuO₂@SiO₂ nanomaterials

First route towards RuO₂@SiO₂ nanomaterials

First route towards RuO₂@SiO₂ nanomaterials

RuO₂ content

Material	Number of I/H	Ru (RuO ₂)
	cycle	[70]
SiO ₂ (x=9)	0	0
	1	3.94
Ru@SIO ₂ (x=9)	2	7.91
RuO ₂ @SiO ₂ (x=9)	2	8.37 (11.0)
SiO ₂ (x=16)	0	0
Ru@SiO ₂ (x=16)	1	4.90
	2	10.09
RuO ₂ @SiO ₂ (x=16)	1	5.64 (7.42)

X = 9, n = 2

$S_{BET} = 253 \text{ m}^2.\text{g}^{-1}$ $D_p = 6.2 \text{ nm}$

 $D_{nanop.} = 4.2 (0.6) \text{ nm}$

 RuO_2 wt % content = 11.0

Specific surface and porosity

	Material	I/H	S _{Spec.} [m ² .g ⁻¹]	V _p [cm³.g⁻¹]	D _p [nm]
	SiO ₂ (x=9)	0	722	1.21	6.0
	Ru@SiO ₂ (x=9)	1	465	0.46	6.0
		2	253	0.40	6.2
	RuO ₂ @SiO ₂ (x=9)	2	259	0.35	4.5
	SiO ₂ (x=16)	0	646	1.14	7.5
Ru@Si		1	289	0.55	7.3
	Ru@SiO ₂ (x=16)	2	198	0.37	7.3
	RuO ₂ @SiO ₂ (x=16)	1	205	0.39	6.0

RuO₂ nanoparticles size

d = 4.2 (0.6) nm

Second route towards RuO₂@SiO₂ nanomaterials

Second route towards RuO₂@SiO₂ nanomaterials

Second route towards RuO₂@SiO₂ nanomaterials

50 nm

RuO₂ nanoparticles size

y/x	[Ru ⁰]Ľ/nm	[RuO ₂ /SiO ₂]/nm
0.25	2.0 (0.4)	2.5 (0.5)
0.5	1.6 (0.3)	2.2 (0.4)
1	0.9 (0.3)	2.1 (0.4)
2	1.0 (0.3)	1.8 (0.4)

RuO₂ content

Second route towards RuO₂@SiO₂ nanomaterials

y/x = 0.25 $S_{BET} = 328 \text{ m}^2.\text{g}^{-1}$ $D_p = 2.6 \text{ nm}$

 RuO_2 wt % content = 57.4

y/x	[Ru ⁰]Ľ ′/%	[RuO ₂ /SiO ₂]/%
0.25	19.6	57.4
0.5	14.1	48.3
1	12.1	43.1
2	8.07	29.1

Specific surface and porosity

[RuO ₂]/SiO ₂	S _{BET} /m².g ⁻¹	D _p /nm
y/x = 0.25	328	2.6
y/x = 0.5	400	2.6
y/x = 1	442	2.6
y/x = 2	476	2.6

Nice materials for catalysis !

Nanoparticles based sensors

Catalytic filter principle

Catalytic filter for selective alkane detection

Catalytic filter obtained from the first route

Catalytic filter obtained from the second route

Ru content effect on sensitivity ?

Catalytic filter effects

Montpellier Charles Gerhardt


```
RuO_2 within SiO_2
```


• Sensitivity towards CO₂ decreases:

Catalytic oxydation of CO towards CO₂ by RuO₂

• Sensitivity towards NO₂ decreases:

A partial reversible chemisorption resulting from the interactions between nitrogen and the OH groups at the silica surface. Leads to stable chemisorbed complexes.

• Sensitivity towards propane increases :

Considering the sensitive layer working conditions (T(filter) < T (sensitive layer)), no catalytic oxydation by RuO_2 can be considered. Nevertheless, at the sensitive layer neighbouring (higher temperature) **ruthenium can have a doping effect**.

 The filter layer prepared following the second route contains a higher amount of RuO₂ catalyst leading to a better activity for the catalytic CO oxydation.

Why residual detection of CO ?

- Partial conversion of CO due to a low catalytic activity.
- Cracks and defaults in the catalytic filter layer.

*RuO*₂/SiO₂ as an external catalytic filter

Preferential detection of propane in presence of CO.

Many thanks to :

Montpellier Charles Gerhardt

ICG-CMOS, Montpellier

and Dr. B. Folch.

INSTM, Firenze Pr. A. Caneschi Dr. C. Sangregorio

LCVN, France Dr. Ch. Blanc Dr. Ph. Dieudonné

UANL, Mexico Dr. C. Luna

IEM, France Dr. A. Van der Lee

INSTM, Milano Pr. A. Lascialfari

MAGMA Net

P.A.U.I.L.F. Project N°YV/CS.2006.186

FAMEnce

CNRS/ASR Project N°21237. UAB, Barcenlona Pr. R. Pleixats

> UA, Portugal Pr. L. Carlos Dr. P. Diaz

UPS, France L. Datas

IOMC, Russia Pr. A. A. Trifonov

ICGM-MACS, France Dr. K. Molvinger

LCC-NCO, France Dr. B. Chaudret, Dr. K. Phillipot

LCC-MMC, France Dr. A. Bousseksou, Dr. G. Molnar, Dr. L. Salmon

> ICGM Dr. C. Reibel