Imaging, Manipulation and Chemical Identification of Individual Atoms with dynamic Force Microscopy: A theoretical perspective.

Rubén Pérez

Nanomechanics & SPM Theory Group Departamento de Física Teórica de la Materia Condensada http://www.uam.es/ruben.perez

NanoSpain, Zaragoza March 9-12th 2009

Outline

1. Nanomechanics & SPM Theory Group: Forces & Transport in Nanostructures with ab initio methods

- 2. "Tip-Induced Reduction of the Resonant Tunneling Current on Semiconductor Surfaces" Phys. Rev. Lett. 101, 176101 (2008)
- 3. "Fullerenes from Aromatic Precursors by Surface Catalysed Cyclo-dehydrogenation" Nature 454, 865 (2008)
- 4. "Complex Patterning by Vertical Interchange Atom Manipulation Using Atomic Force Microscopy" Science 322, 413 (2008)

Forces & Transport in Nanostructures: First-principles calculations

Methodology

"The computer is a tool for clear thinking" Freeman J. Dyson

Ab-initio total energy methods

(based in Density Functional Theory) Non-equilibrium Green's Functions

both plane wave & local orbital basis: accuracy/efficiency balance Linked with the local orbital description

Structure + electronic properties

FIREBALL, OPENMX CASTEP, VASP **Electronic transport**

"Tip-Induced Reduction of the Resonant Tunneling Current on Semiconductor Surfaces" Phys. Rev. Lett. 101, 176101 (2008)

> Ab initio Simulations: UAM: P. Pou, R. Perez FZU(Prague): P. Jelinek STM Experiments: FZU (Prague): M. Švec, V. Chab

Atomic contact: metals

- metal surfaces monotonic increase of the conductance observed while approaching the tip to the sample
- transition to the contact related relaxation of the atoms

fee address from the set of

for without relaxation
 top without multi-way
 top tull calculation

4.75

5.25

3.0

0.0

3.25

 correlation between multiple scattering effects and SR forces: no longer exponetial behavior

1.8

1.6

0.6 0.4 0.2

3.25

3.75

J.M. Blanco et. al. PRB **70** 085405 (2004) J.Krőger et. al. New Journal of Physics **9** 153 (2007) semiconductor surfaces – almost no information

Conductance drop: summary

well reproducible during different sessions
 observable only at small bias voltage
 tip structure slightly modify the shape but not the feature
 observed at both polarities and both scan z-directions of tip
 before jump almost exponential behavior

P. Jelinek et. al. PRL 101, 176101 (2008)

DFT simulation: CoA Si7x7 + tip W

- distortion of the local structure of the tip and sample at short distances
- □ reversible process
- attractive short-range force onset corresponds to the drop in the conductance

Conductance and force: Si corner adatom

Electron density along the path

- chemical interaction between the tip and sample changes the position of Si dangling bonds near the Fermi level
- → direct impact on the tunnelling current along the tip-sample distance
- P. Jelinek et. al. PRL 101, 176101 (2008)

Isosurfaces of 0.05 e/Å³ in the energy range E_F , E_F -0.4 eV

"Fullerenes from Aromatic Precursors by Surface-catalysed Cyclodehydrogenation" Nature 454, 865 (2008)

Ab initio Simulations:

UAM: G. Biddau, M. Basanta, J. Ortega, R. Perez

Surface Science:

ICMM (CSIC): G. Otero, C. Sanchez-Sanchez, R. Caillard, M.F. Lopez, C. Rogero, F.J. Palomares, J. Mendez, J.A. Martin-Gago

Chemistry:

ICMM (CSIC): B. Gomez-Lor

ICIQ: N. Cabello, A.M. Echevarren

Objective and motivations

OBJECTIVE: Study and efficient synthesis fullerenes and triazafullerenes

MOTIVATIONS

microelectronics, superconductivity, corrosion resistence, non linear optics, organic ferromagnetism...

Available synthesis methods:

Fullerenes: - Graphite Vaporization *(uncontrolled)*

- Through dehydrogenation¹ (low efficiency)

Triazafulleres:

none

1] Scotts et al., Science 295, 1500-1503 (2002)

The Process

VACUUM THERMAL EVAPORATION

G.Otero et al., Nature 454, 865 (2008)

"Complex Patterning by Vertical Interchange Atom Manipulation Using Atomic Force Microscopy" Science 322, 413 (2008)

Ab initio Simulations:

UAM: P. Pou, R. Perez

FZU(Prague): P. Jelinek

AFM Experiments:

Osaka University: Y. Sugimoto, M. Abe, S. Morita

NIMS (Tsukuba, Japan): O. Custance

Dynamic AFM

http://monet.physik.unibas.ch/famars/afm_prin.htm

Dynamic AFM: Our Goal

Why changes observed in the dynamic properties of a vibrating cantilever with a tip that interacts with a surface make possible to:

AM-dAFM

• Obtain molecular resolution images of biological samples in ambient conditions.

•Resolve atomic-scale defects in UHV. FM-dAFM

R. García and R. Pérez, Surf. Sci. Rep. 47, 197 (2002)

~ 3.0 nm

~ 6.0 nm

~ 5.0 nm

Recent developments in FM-AFM

1. DISSIPATION: Characterizing the tip structure and identifying a dissipation channel due to single atomic contact adhesion.

N. Oyabu et al. Phys. Rev. Lett. 96, 106101 (2006).

2. IMAGING: changes in topography: access to the real surface structure?

3. CHEMICAL IDENTIFICATION:

based on the relative interaction ratio of the maximum attractive force measured by dynamic force spectroscopy

Y. Sugimoto et al Nature 446, 64 (2007).

Y. Sugimoto et al Phys. Rev. B 73, 205329 (2006).

Recent developments in FM-AFM

Understanding RT DFM-based single-atom manipulation 4. LATERAL MANIPULATION: Si vacancy on Si(111)-7x7 (tip assisted

thermal hopping)

Y. Sugimoto et al. Phys. Rev. Lett. 98, 106104 (2007).

5. VERTICAL MANIPULATION:

Tip/sample exchange of atoms on Sn/Si(111)

Y. Sugimoto et al., Science 322, 413 (2008). α-Sn/Si(111)-(√3x√3)

Interchange vertical manipulation: $Si \rightarrow Sn$

Tip positioning over a selected Si atom

Atom tracking technique Lateral precision: ±0.1 Å

M. Abe, Y. Sugimoto, O. Custance, and S. Morita, Appl. Phys. Lett. 87 (2005) 173503.

M. Abe, Y. Sugimoto, O. Custance, and S. Morita, Nanotechnology 16 (2005) 3029.

Interchange vertical manipulation: $Si \rightarrow Sn$ Tip approach toward the Si atom

Interchange vertical manipulation: $Si \rightarrow Sn$

Tip retraction from the surface

Interchange vertical manipulation: $Sn \rightarrow Si$

Tip positioning over the previously deposited Sn atom

Atom tracking technique Lateral precision: ±0.1 Å

Sn Sn Sn

M. Abe, Y. Sugimoto, O. Custance, and S. Morita, Applied Physics Letters 87 (2005) 173503.

M. Abe, Y. Sugimoto, O. Custance, and S. Morita, Nanotechnology 16 (2005) 3029.

Interchange vertical manipulation: $Sn \rightarrow Si$

Tip approach toward the deposited Sn atom

Interchange vertical manipulation: $Sn \rightarrow Si$

Tip retraction from the surface

- The Sn atom on the surface was interchanged with a Si atom at the tip apex.
- The image contrast dramatically changed after atom interchange.

Atomic "dip-pen" nanolithography

Sn

- 11 Interchange Vertical manipulations
 + 1 Interchange lateral manipulation
- The construction time was reduced to 1.5 hours

Reproducibility

A complex phase space...

- Manipulation in the strong tip-surface interaction regime.
- Tip and sample modification, several solutions (complex phase space): plastic deformations.
- Jumps between solutions also upon retraction. **Different "final" configurations!!** (depending on the indentation depth, the position or the atomic structure of the tip).

Final configuration: Surface atom transferred to tip. Creation of an atomic vacancy (N. Oyabu et al, PRL 2003)

Final configuration: Atom interchange (Sugimoto et al, Science 322, 413, 2008)

Mechanism: Tip model

- Small tip surface distances: multi-atom contact
- Complex phase space
- Experimental tip: stable at the strong tip-surface interaction regime.
- Apex model: all the atoms fixed but the two outermost ones.

Advantages:

- I. Stability
- II. Simplification of the phase space

Mechanism: Vertical scan

- Vertical manipulation as combination of mechanical and thermal process.
- Formation of characteristic dimer structure along deformation path (energetically stable).
- Atomic rearrangement reflects by energy & forces discontinuities.
- Local character of the tip-sample deformation.
- Temperature effect not included in the simulation.

Mechanism: Energy Barriers

• Tip model: 4 atoms free

Mechanism: Energy Barriers

Explore possible dimer rearrangement due to thermal & mechanical movement

- Complicated configuration space; only limited phase space explored
- Estimated energy barriers ~ 0.4 eV (Nudged elastic band calculation).
- Dependence on the tip-sample distance, tip elasticity & structure, temperature...

Conclusions

Single-atom manipulations: atomistic insight into these processes.

Lateral Si-vacancy manipulation

- Significant reduction of activation energy due to the tip proximity
- Operating at the attractive force regime Y. Sugimoto et al, Phys. Rev. Lett. 98, 106104 (2007)

Vertical Si/Sn-exchange manipulation

- New manipulation method: 'Interchange vertical manipulation'
- Characteristic mechanical deformation: the "hybrid tip-surface" dimer structure
- Operating at the repulsive force regime
- Combination of mechanical and thermal processes
 - Y. Sugimoto et al, Science 322, 413 (2008).

Summary

1. Nanomechanics & SPM Theory Group: Forces & Transport in Nanostructures with ab initio methods

2. "Tip-Induced Reduction of the Resonant Tunneling Current on Semiconductor Surfaces" Phys. Rev. Lett. 101, 176101 (2008)

3. "Fullerenes from Aromatic Precursors by Surface Catalysed Cyclo-dehydrogenation" Nature 454, 865 (2008)

4. "Complex Patterning by Vertical Interchange Atom Manipulation Using Atomic Force Microscopy" Science 322, 413 (2008)

Acknowledgements & Funding

THEORY: UAM, Spain:

Pablo Pou, Wojciech Kaminski, Pavel Jelinek (FZU, Prague) Giulio Biddau, Krzysztof Kosmider

EXPERIMENTS:

FM-AFM: Osaka University & NIMS (Tsukuba), Japan:N. Oyabu, Y. Sugimoto, M. Abe, S. Morita & O. Custance

FULLERENES: ICMM (CSIC): G. Otero, C. Sanchez-Sanchez, R. Caillard, M.F. Lopez, C. Rogero, F.J. Palomares, J. Mendez, J.A. Martin-Gago Chemistry ICMM: B. Gomez-Lor ICIQ: N. Cabello, A.M. Echevarren STM: FZU (Prague): M. Švec, V. Chab

MEC (Spain): Projects MAT2005-01298, NAN2004-09183-C10-07 EU FP-6: STREP project FORCETOOL (NMP4-CT-2004-013684) RES (Computing): Magerit (CesViMa) & Mare Nostrum (BSC)