

Lab-on-a-Chip: nanofluidic research and microfluidic applications

Albert van den Berg

BIOS/Lab-on-a-Chip group MESA+ Institute for Nanotechnology University of Twente, The Netherlands

Outline

- · Nanomedicine
- Capillary force based nanofluidics
 - Flow independent droplet generation/liquid crystallography
- · Electrokinetic nanofluidics
 - DNA transport through nanochannels
- · Biomedical applications using microfluidics
 - Fertility chip
 - Cancer chip

Nanomedicine

- · Nanoparticles/CNT's:
 - (bio)medical imaging
 - localized therapy (nanoparticle heating)
 - targeted drug delivery
 - regenerative medicine (neurons, scaffolds)

Nanomedicine

Nanomedicine

- Nanoparticles/CNT's:
 - (bio)medical imaging
 - local treatment (nanoparticle heating)
 - targeted drug delivery
 - regenerative medicine (neurons, scaffolds)
- · Nanofluidics and nanosensing: diagnostics
 - control of drug dosing
 - DNA analysis
 - biomarker detection (nanosensors)
 - cell analysis

Two-phase flow microfluidics

Shear flow determined droplets

Geometry determine droplets

> inlet-length L determined droplets

Geometry determined droplet generation

 $L=1000 \mu \text{m}, h=w=10 \mu \text{m}$

 $L=100\mu m, h=w=10 \mu m$

Droplet formation mechanism

Capillary pressure decrease

L.L. Shui, F. Mugele, A. van den Berg, J.C.T. Eijkel, Applied Physics Letters, 93(15), 153113, (2008)

Droplet arrangement

L.L. Shui, S. Kooy, J.C.T. Eijkel, A. van den Berg, in preparation.

3D Liquid Crystallography

Dynamic Organizations

General Electrokinetics

- Electrophoresis individual movement of ions and colloids with respect to fluid
- · Electro-osmosis bulk movement of liquid induced by localized charge of the wall

Separation of DNA in open nanochannels

N. Kaji et al, Anal Chem., (2004), 76(1), 15-22.

Separation of DNA in open nanochannels

Nanoslit device

Nanospain, March 9th, 2009

The Lab-on-a-Chip Group

Fused Silica sandwich

Surface roughness nanoslit

Etched surface AFM scan; tip-radius 2 nm; 1 nm rms

Experimental conditions

- YOYO-1 λ -DNA (1/5 bp), length 20 μm
- Tris-Borate-Na-EDTA buffer, pH = 8.3
- B-MercaptoEthanol 3% against photobleaching and photoknicking
- Polyvinylpyrrolidone MW 10.000, 2.5% against electroosmotic flow

YOYO-1 λ -DNA in a 20 nm nanoslit - high field

Electrical field 200 kV/m

50 μm

High field λ -DNA movement

Electrical field 200 kV/m

High field λ -DNA movement

- Mobility in go phase 1% of bulk mobility!
- On average: 10% of time "go", 90% "stop"
- Overall mobility: ~ 0.1% of bulk

Field-strength dependent mobility tute for Nanotechno

Steric trapping

Roughness defects

 $\mu = \frac{\mu_0}{\exp\left[\alpha E\right]}$

Width 3 µm

Retardation by a series of trapping events

e.g. Gauthier and Slater, J.Chem.Phys. 117 (2002) 6745

Previous studies: no mobility dependence on E-field

Tegenfeldt 2004 100x200 nm 0.5 kV/m

Mannion 2006 100 nm cylinders 2.1 kV/m

Cross 2007 19 and 70 nm slits 3.3 kV/m

we 12 and 20 nm slits 2-200 kV/m

DNA separation

G.B. Salieb-Beugelaar et al., Nano Letters, (2008), 8(7), 1785-1790.

Breastcancer chip

- 1/9 women affected
- Treatment depends on age, genetic factors, tumor type, etc.
- Lab-on-Chip technology for optimal choice of drugs
- · First tests with cancer cell lines, later microbiopsy's

Cancer chip

Chip under microscope

TNF- α

control

SSP

Cell-covered area measure for drug-efficiency

Fertility chip

- 10% of couples
- Semen analysis:
 - Concentration, motility en morphology
 - Con's: patient unfriendly, labor intensive, unreliable

→ fertility chip

Concentratie > 20 miljoen cellen per mL

a: > 20 µm/s b: 5-20 µm/s c: 0-5 µm/s

d: 0 μm/s

Motiliteit a>25% of a+b>50%

Morfologie > 15% normaal

Semen-on-chip

- Semen cells
 - Head: 3 μm wide, 5 μm long
 - Tail: 45-50 µm long
- Concentration:
 - Counting cells in fixed volume
- Chip
 - Channel: 20 μm deep en 42 μm wide

Can we count semen cells?

$3,4,5 \mu m$ beads

Conclusions

- Electrokinetics and capillary forces important for micro/nanofluidics
- Microfluidics enable LOC systems (lithium)
- Opportunities in biomedical applications

Thank you for your attention!