Supramolecular Assemblies of Carbon Nanohorns and Porphyrin for Photovoltaic Devices

Maria Vizuete, ‡ María José Gómez-Escalonilla, ‡ José Luis G. Fierro, ‡ Atula S. D. Sandanayaka, § Taku Hasobe, §,£ Masako Yudasaka, § Sumio Iijima, € Osamu Ito, £, * and Fernando Langa ‡, *

‡ Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Universidad de Castilla-La Mancha, 45071 Toledo, Spain;
‡ Instituto de Catálisis y Petroleoquímica, CSIC, Madrid, Spain;
§ School of Materials Science, Japan Advanced Institute of Science and Technology, Asahidai, Nomi, 923-1292, Japan;
£ PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan;
□ Nanotube Research Center, National Institute of Advanced Industrial and Technology, Higashi, Tsukuba, Ibaraki 305-8565, Japan;
€ Department of Physics, Meijo University, Shiogamaguchi, Tenpaku-ku, Nagoya 468-8502, Japan;
£ NIMS (Tsukuba) & IMRAM, Tohoku University (Sendai), Japan

Contact e-mail: Maria.Vizuete@uclm.es

Carbon Nanohorns [1] (CNHs) represent a new type of nanostructured carbon-based material. One of the merits of CNHs different from other carbonaceous materials is a high purity due to the absence of any metal nano-particles. Thus, CNHs have attracted a great deal of attention in several fields as optoelectronic applications. [2]

Combination of covalent and non-covalent functionalization of CNHs is particularly promising for building donor–acceptor nanohybrids. Among various non-covalent methodologies reported, self-assembly by using an ammonium ion–crown ether interaction is regarded as one of the most powerful methods. Porphyrin / Fullerene based donor–acceptor supramolecular systems involving crown ether-ammonium interactions have been prepared for probing photo-induced electron processes. This concept has been extended to build porphyrin / SWCNT donor–acceptor nanohybrids, and occurrence of photo-induced charge separation processes is clearly demonstrated. [3]

Herein, we describe a supramolecular assemble of CNH covalently bonded with amino groups via spacer (sp) (CNH-sp-NH$_3^+$), which is included in crown-ether appending porphyrin (Crown-ZnP). Nanohybrid CNH-sp-NH$_3^+$ and the supramolecular assemble CNH-sp-NH$_3^+$;Crown-ZnP were characterized by means of several techniques as HR-TEM, TGA, XPS, Raman, FT-IR and UV-vis spectroscopies. Photoinduced electron-transfer processes of the nanohybrids are confirmed on combining the time-resolved absorption and fluorescence measurements, in addition to the accumulation of viologen cation radical in solution with steady-light illumination. The efficiency of this system in photovoltaic solar cells is shown.

References:


Figures: