Poly(methacrylic acid)-based single-chain polymer nanoparticles for targeting and imaging pancreatic tumors *in vivo*

Marco Marradi¹, Ana B. Benito¹, Miren K. Aiertza¹, Larraitz Gil-Iceta², María Jiménez-González², Boguslaw Szczupak², Torsten Reese², Eugenio Scanziani^{3,4}, Lorena Passoni³, Michela Matteoli,³ Marcella De Maglie,^{3,4} Arie Orenstein⁵, Mor Oron-Herman⁵, Gennady Kostenich⁵, Ludmila Buzhansky⁶, Talia Shekther Zahavi⁶, Ehud Gazit⁶, Hans-Jurgen Grande¹, Vanessa Gomez-Vallejo², Jordi Llop² and Iraida Loinaz¹

¹IK4-CIDETEC, Biomaterials Unit,
- , Spain; ²
, Spain; ³Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy; ⁴Dipartimento di Medicina V , Via Celoria 10, 20133, Milan, Italy; ⁵The Advanced Technologies Center, Sheba Medical Center, Tel Hashomer 52621, Israel; ⁶Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel

Cancer accounted for 8.2 million deaths worldwide in 2012 and, for some types of cancer, e.g. pancreatic adenocarcinoma incidence equals mortality [1]. The development of tools for the early diagnosis of pancreatic adenocarcinoma is an urgent need in order to increase treatment success rate and reduce patient mortality.

Here, we present a modular nanosystem platform integrating soft nanoparticles with a targeting peptide and an active imaging agent for diagnostics. Biocompatible single-chain polymer nanoparticles (SCPNs) based on poly(methacrylic acid) were prepared and functionalized with the somatostatin analogue PTR86 as the targeting moiety (Figure 1), since somatostatin receptors are overexpressed in pancreatic cancer. The gamma emitter ⁶⁷Ga was incorporated by chelation and allowed *in vivo* investigation of the pharmacokinetic properties of the nanoparticles using single photon emission computerized tomography (SPECT). The resulting engineered nanosystem was tested in a xenograph mouse model of human pancreatic adenocarcinoma. Imaging studies demonstrated that accumulation of targeted SCPNs in the tumor is higher than that observed for non-targeted nanoparticles due to the improved retention of the nanocarrier in this tissue [2].

References

- [1] Ferlay et al., Eur. J. Cancer, 49 (2013) 1374.
- [2] Benito et al., Biomacromolecules, 17 (2016) 3213.

Figures

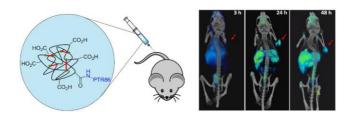


Figure 1: Water dispersible, radiolabeled and targeted single-chain poly(methacrylic acid) (PMAAc) nanoparticles were injected into mice bearing subcutaneous human pancreatic ductal adenocarcinoma. Imaging studies were performed *in vivo* by SPECT at different times.