Doxorubicin-loaded poly(ε-caprolactone) nanoparticles to improve drug antitumor effect

Laura Cabeza1,2, Raul Ortiz1,4, Julia Jiménez-Lopez1,2,3, Gloria Perazzoli1,2, Octavio Caba1,4, Ana R. Rama1,4, Celia Velez1,2,3, Maria Carmen Leiva1,2,3, Jose Carlos Prados1,2,3, Ángel V. Delgado5, José L. Arias1,2,6, Consolación Melguizo1,2,3

1Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), Granada University, Av. del Conocimiento, s/n, 18100, Granada, Spain
2Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, Granada, Spain; 3Department of Anatomy and Embryology, Faculty of Medicine, University of Granada. 18071, Granada, Spain; 4Department of Health Science, University of Jaén, 23071 Jaén, Spain; 5Department of Applied Physics, University of Granada, 18071, Granada, Spain; 6Department of Pharmacy and Pharmaceutical Technology, University of Granada, 18071 Granada, Spain.

Contact@E-mail: melguizo@ugr.es

Abstract

Nanotechnology has provided new strategies in biomedicine for the treatment of certain pathologies such as cancer by the development of nanoformulations that transport antitumor drugs improving their solubility, specificity, half-life in blood stream and reducing their toxicity [1]. The tumor pathology more common diagnosed and the main cause of death worldwide for this disease is lung cancer [2]. One of the drug used to treat it is Doxorubicin (DOX) alone or in combination with other drugs. This drug has a good antitumor activity. However, its low specificity for tumor tissues makes it toxic for nontumor tissues causing severe side effects, especially cardiac toxicity [3].

Our study is based in the development of DOX-loaded poly (ε-caprolactone) (DOX-PCL) nanoparticles (NPs) that were tested in in vitro and in vivo lung cancer models. For the in vitro model we used human and mouse lung cancer cell lines A549 and LL/2. For the in vivo model immunocompetent C57BL/6 mice were subcutaneously inoculated with LL/2 cell line. Our results showed no toxicity of blank PCL NPs in general in any cell line thus demonstrating its biosafety and biocompatibility. Otherwise, DOX-PCL NPs increased cell death reducing the half-inhibitory concentration (IC50) compared to free drug up to 56.3% and 63.6% in A549 and LL/2 respectively (Fig. 1). Furthermore, in vivo assays demonstrated better antitumor activity (Fig. 2) and survival and also a reduction of cardiac toxicity in mice treated with DOX-PCL NPs. These results suggest that PCL NPs are a safe and efficient nanoformulation to improve the treatment of lung cancer.

References


Figures
Figure 1: Percentage of A549 cell death.

Figure 2: Evolution along time of tumor volume of mice.