## Removal of caffeine and diclofenac from aqueous solutions by adsorption on a multiwall carbon nanotube

## L. Santamaría, S.A. Korili, A. Gil

Department of Applied Chemistry, Public University of Navarra, Campus Arrosadia, 31006 Pamplona, Spain Institute for Advanced Materials, Public University of Navarra, Campus Arrosadia, 31006 Pamplona, Spain andoni@unavarra.es

## Abstract

Batch sorption experiments were performed to study the adsorption of two emerging pollutants from aqueous solutions using a commercial multiwall carbon nanotube as adsorbent. Caffeine and diclofenac were selected as representative contaminants. The multiwall carbon nanotube from Sigma-Aldrich was characterized by nitrogen adsorption at -196°C, and through the determination of pHpzc. The effect that several operational parameters, such as initial concentration of organic molecules, mass of adsorbent and contact time, may have on the sorption behavior was also evaluated. The contact time to attain equilibrium for maximum adsorption was found to be 40 min (see Figure 1-A). The kinetic data were fitted to several adsorption models and the adsorption process found to follow pseudo-second-order rate. The equilibrium adsorption data were analyzed using the Freundlich, Langmuir and Toth isotherm equation models (see Figure 1-B).



Figure 1: A-Kinetic adsorption data for diclofenac on the multiwall carbon nanotube at various concentrations of adsorbate. B-Adsorption isotherms for the equilibrium of caffeine and diclofenac on the multiwall carbon nanotube.

## Acknowledgements

The authors thank financial support from the Spanish Ministry of Economy, Industry and Competitiveness (MINECO) through the project MAT2013-47811-C2-1-R.