YF₃:Tm,Yb nanocrystals: enhanced up-conversion blue and UV emitters

M. Quintanilla¹, N.O. Núñez², E. Cantelar¹, M. Ocaña² and <u>F. Cussó¹</u>

Depto. Física de Materiales, C-IV, Universidad Autónoma de Madrid, Spain

Instituto de Ciencia de Materiales, CSIC, Isla de la Cartuja, Sevilla, Spain

fernando.cusso@uam.es

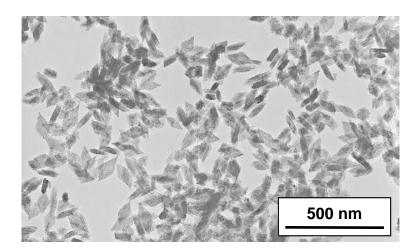
Fluorides doped with rare earth (RE) ions have been used in a wide range of photonic applications along the last decades. At present, the importance of nanoscale optically functional materials to be used as medical and biological tags has increased the potentiality of fluorides. To exploit those possibilities new methods to obtain several nanostructures based on fluorides are being developed, and several doping possibilities are being tried to obtain visible emissions using biologically innocuous excitation [1,2]. Recently, a novel synthesis method, providing a straightforward and versatile procedure for the synthesis of uniform lanthanide fluoride nanophosphors has been proposed [3].

At present, there is a renewed interest in YF_3 nanophosphors directed to obtain high energy luminescent emissions. Along this line, doping with $Tm^{3+}\&Yb^{3+}$ has been reported to produce enhanced blue and ultraviolet emissions [4-5]. In the present work, synthesis and optical characterization of the Tm^{3+}/Yb^{3+} co-doped YF_3 nanophosphors is reported. The dominant Tm^{3+} up-converted emission bands have been investigated by exciting the Yb^{3+} ions at around 980 nm.

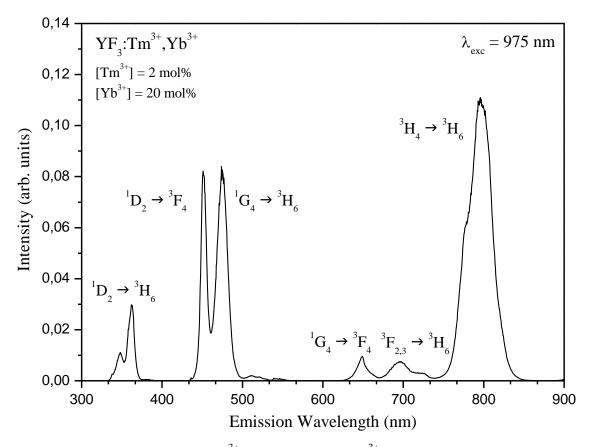
The RE-doped fluoride nanoparticles were prepared by a homogeneous precipitation reaction in ethylene glycol solutions containing the rare earth precursors and [BMIM]BF₄ as a source of fluoride ions [3]. In order to investigate the effects of the doping level on the optical properties of the nanophosphors, the Yb^{3+} content was varied in the range 10-20% molar while the Tm^{3+} concentration was kept constant (2% molar).

The morphology of the nanoparticles was examined by transmission electron microscopy using a TEM Philips 200CM system. Qualitative composition of the particles was assessed by energy dispersive X-ray analysis using an EDX system (Philips DX4) coupled to an electron microscope. The crystalline structure of the particles was assessed by X-ray diffraction. The optical characterization has been performed using a Ti:Za laser pumped with an Ar-laser to excite Yb³⁺ ions. The visible Tm³⁺ luminescence was dispersed by using an ARC Spectrapro 500-I monochromator and then detected with a photomultiplier tube.

In Figure 1 a TEM image of the Tm³⁺/Yb³⁺-doped nanophosphors can be seen, illustrating the morphology and uniformity of the obtained nanocrystals.


Figure 2 shows the visible emissions in the wavelength range 300 nm $< \lambda < 810$ nm, arising from Tm^{3+} ions after Yb^{3+} excitation at $\lambda = 980$ nm. These results demonstrate that effective co-doping has been achieved, providing the adequate conditions for effective energy transfer between Yb^{3+} and Tm^{3+} ions, with effective blue and UV up-conversion.

References:


- [1] L. Wang and Y. Li, Chem. Mater. 19 (2007), 727.
- [2] G.S. Yi, G.M. Chow, Adv. Funct. Mater. 16 (2006), 2324.
- [3] N.O. Núñez, M. Quintanilla, E. Cantelar, F. Cussó, M. Ocaña, J. Nanopar. Res. DOI 10.1007/s11051-009-9824-6

- [4] Guanshi Qin, Weiping Qin, Changfeng Wu, Shihua Huang, Dan Zhao, Jisen Zhang, Shaozhe Lu, Optics Communications **242** (2004) 215–219
- [5] Chunyan Cao, Weiping Qin, Jisen Zhang, Yan Wang, Peifen Zhu, Guofeng Wang, Guodong Wei, Lili Wang, Longzhen Jin, J. Fluorine Chemistry **129** (2008) 204–209

Figures:

Figure 1. TEM image of the Tm³⁺/Yb³⁺-doped nanophosphors.

Figure 2. Emission spectra of $[Tm^{3+}] = 2 \text{ mol}\%$ and $[Yb^{3+}] = 20 \text{ mol}\%$ co-doped samples by pumping at 975 nm.