Field-dependence of the resistivity minimum in intermediate valence nanometric YbAl₃

C. Echevarria-Bonet¹, L. Fernández Barguín¹, D. P. Rojas², S. N. Kaul^{1,3}, E. Bauer⁴

echevarriac@unican.es

The magnetoelectronic properties of nanometric Rare Earth alloys are relatively unknown [1-3], even nowadays when nanoscience is a principal subject of scientific activity. The understanding of their size-dependent properties is a must as they are connected to fundamental condensed matter physics, in particular related to Fermi surface shape. Yb-based alloys follow the Doniach diagram in which the competition between RKKY and Kondo interactions plays a major role. Among them, YbAl₃ is a simple cubic compound (*Pm-3m* structure), displaying *strong electronic correlation* effects [4].

Recently, we have shown that it is possible to prepare nanometric *4f*-alloys with a narrow size distribution and in *massive* quantities. The latter is a significant advantage as it clearly simplifies the interpretation of macroscopic measurements and thereby enables technological advances [1]. In such samples a shell of antiferromagnetic Yb-oxide is present and Rietveld refinements show that amounts around 10%. In nanometric YbAl₃, we had demonstrated that the variation of valence is due to a modification of the fraction of surface atoms compared to the total number of particles. This clearly affects both the specific heat and the susceptibility [2, 3]. Here, we study the magnetic field-dependence of the electrical resistivity between 2 K and 300 K (Fig. 1) of pressed pellets of YbAl₃ with particle sizes below 10 nm deduced from XRD and TEM (HRTEM) analysis (Fig. 2). The results, with an *unexpected resistivity minimum* around 15 K, are broadly *relevant*, with a drastic change compared to bulk counterparts [5]. The explanation for its existence involves the appraisal of a Kondo interaction in intermediate valence nanoparticles.

References

- [1] G. F. Zhou and H. Bakker, Phys. Rev. Lett. 73, 344 (1994).
- [2] D. P. Rojas et al., Phys. Rev B 78, 094412 (2008).
- [3] D. P. Rojas et al., Nanotechnology 78, 094412 (2010).
- [4] E. Bauer et al., Phys. Rev. B 52, 4327 (1995).
- [5] D. M. Rowe et al., J. Phys. D. Appl. Phys. **35**, 2183 (2002); T. Görlach et al., Phys. Rev. B **71**, 033101 (2005).

Figures

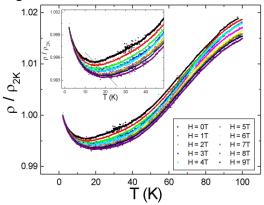


Figure 1. Field-dependence of electrical resistivity for 70h milled YbAl₃.

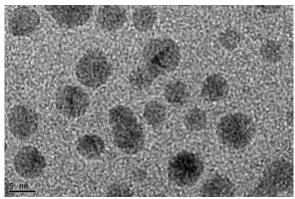


Figure 2: TEM image of milled (70h) YbAl₃ nanoparticles.

Departamento CITIMAC. Universidad de Cantabria. Santander 39005. SPAIN.
Departamento Física. Universidad Carlos III de Madrid, Avda. de la Universidad, 30, 28911 Leganés (Madrid), SPAIN.

³ School of Physics and Centre for Nanotechnology, University of Hyderabad, Hyderabad 500034, INDIA.

⁴ Institute of Solid State Physics, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien, AUSTRIA.