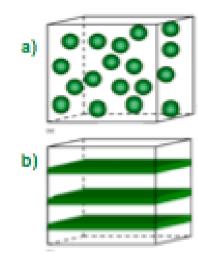


Dielectric and magnetic properties of ferrite/poly(vinylidene fluoride) nanocomposites

P. Martins, C.M. Costa, G. Botelho, S. Lanceros-Mendez, J.M. Barandiaran, J. Gutierrez Materials Chemistry and Physics **131** (2012) 698–705

Universidad del País Vasco


Euskal Herriko Unibertsitatea

INTRODUCTION

- Hybrid Multiferroic Materials are excellent candidates as memory elements, smart sensors, etc.
- Magnetoelectric ones (ME) are composed of a magnetostrictive and a piezoelectric material
- Two main types:
 - a) granular
 - b) laminate

• Two-phase granular composites with ferrite grains and a ferroelectric matrix have good properties for the magnetoelectric effect.

... INTRODUCTION

- Poly(vinylidene fluoride) (PVDF), is a semicrystalline polymer, and one of the largest pyro- and piezoelectric polymers.
- It presents four crystalline phases $(\alpha, \beta, \gamma, \delta)$
- The polar β-phase shows the largest piezoelectric,pyroelectric and ferroelectric coefficients, as well as a high dielectric constant
- Usually obtained by mechanical stretching of the non-polar α -phase

IN THIS PAPER

- PVDF-based nanocomposites with Co or Ni ferrites fillers are investigated
- The polar β phase of the polymer is nucleated by the ferrites, giving a simplified processing method for the preparation of magnetoelectric composites

EXPERIMENTAL

- CoFe₂O₄ (35–55 nm) and NiFe₂O₄ (20–30 nm) nanoparticles (Nanoamor)
- PVDF (Solef 1010) density = 1.78 g cm⁻³ (Solvay)
- PVDF-Ferrite films (thickness ≈ 40–50 μm) prepared by spreading the solution on a clean glass substrate
- Weight 0.001% to 50% (Co-ferrite), 5% to 50% (Ni-ferrite)
- Scanning electron microscopy (SEM): Leica Cambridge S360
- X-ray diffraction (XRD): Philips PW1710
- Dielectric constant: automatic Quadtech 1929 Precision LCR meter + Linkam THMSE 600 oven (1 Hz to 1 MHz, 150 to 425 K)
- Zero-field-cooled (ZFC) field cooled (FC) curves: 75 Oe, 4 to 600 K VSM)
- Room temperature hysteresis loops: VSM (-10 to +10 T)

RESULTS

- Good dispersion of the ferrite nanoparticles within the polymer is achieved at all concentrations
- For low Co or Ni ferrite concentrations, the microstructure of PVDF is spherulitic (10-100 μ m) α -phase (Fig 1a,b)
- For c = 0.08 or higher, the spherulitic structure is destroyed and the polymer agglomerates on the ferrite particles (Fig 1c,d)
- Ferrite nanoparticles result in the α to β phase transformation (Fig 2)
- Nucleation of the β -phase is stronger for the Co-ferrite nanoparticles (Fig 3)
- This variation is attributed to the different filler/polymer surface interactions

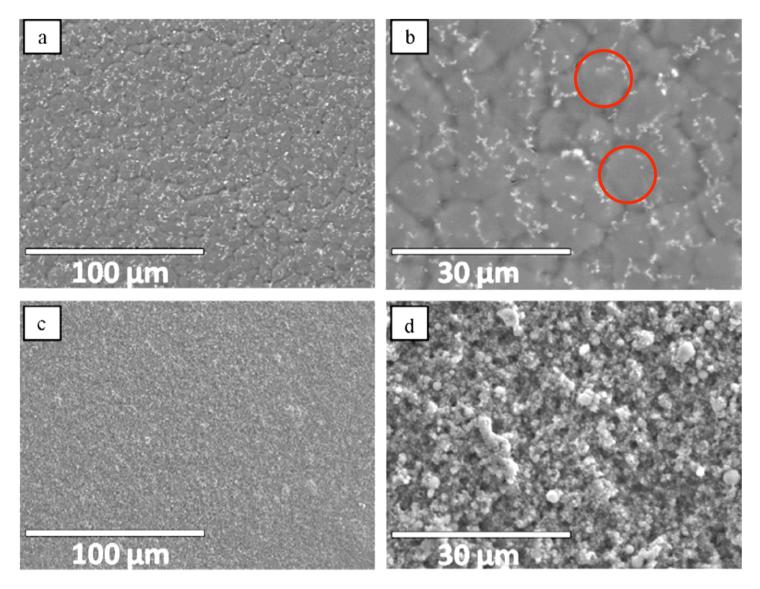


Fig. 1. SEM images of CoFe₂O₄/PVDF nanocomposites with ferrite volume fractions of 0.02 (a and b) and 0.25 (c and d).

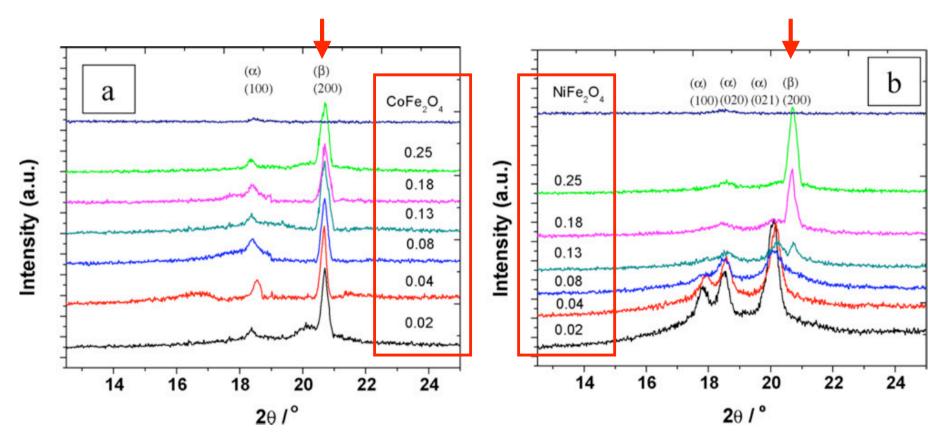


Fig. 2.- XRD patterns for (a) $CoFe_2O_4/PVDF$ (b) $NiFe_2O_4/PVDF$ nanocomposites with different volume fractions of ferrite. Peaks identify the respective α , β phases

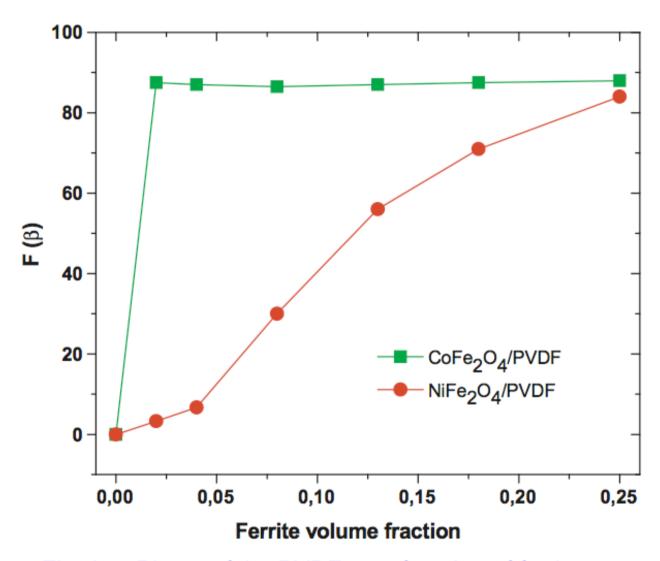


Fig. 3. β-Phase of the PVDF as a function of ferrite content

- Increase of ε for the composites with respect to the pure polymer (Figs 4,5)
- The higher values are obtained for the CoFe₂O₄ nanocomposites (Figs 4,5)
- Dielectric losses also increase, but stay lower that 0.3 (Fig 5)
- Explained by the early nucleation of the β -phase of the polymer (polar nature and larger dielectric constant than the α -phase)
- Dielectric losses also reflects the differences between the α and β -phases of PVDF (larger for the Co-ferrites that nucleate the polar β -phase)

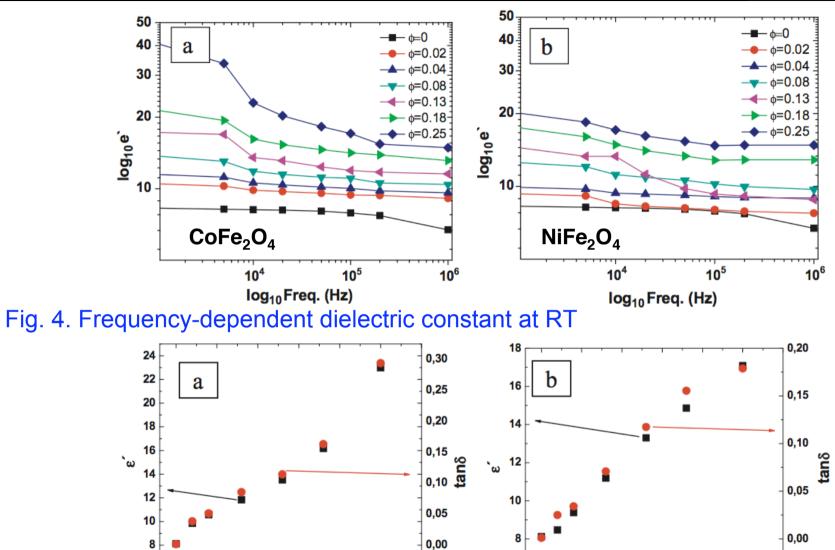


Fig. 5. Dielectric constant and losses at 10 kHz (RT)

CoFe₂O₄ volume fraction

0,05

0,10 0,15 0,20

0,25

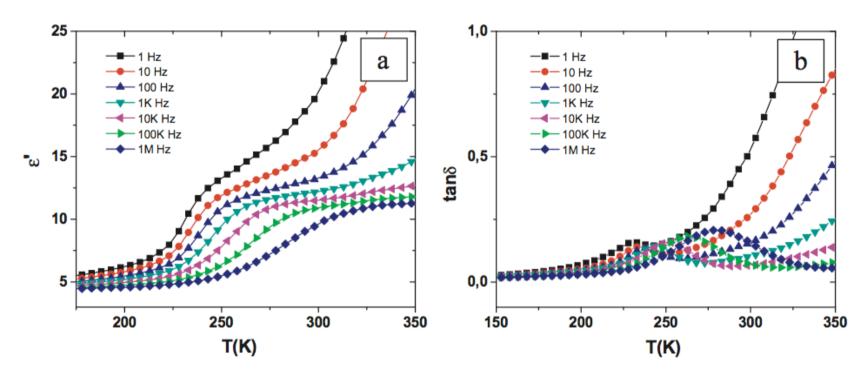
0,30

0,00

0,10

0,15 0,20

NiFe₂O₄ volume fraction


0,25

- Dielectric relaxation assigned to cooperative segmental motions within the amorphous phase (β-relaxation) has been studied (Fig 6)
- Shows a similar behavior as in the pure polymer
- Dynamics analyzed by the Vogel–Fulcher–Tammann (VFT) formalism (Fig 7)
- Parameters of the β -relaxation are the same as in the β -phase obtained by stretching from the α -phase (Table 1)
- Ferrite particles make the composites more fragile (m factor) than the pure α phase. Values are similar to the β -PVDF

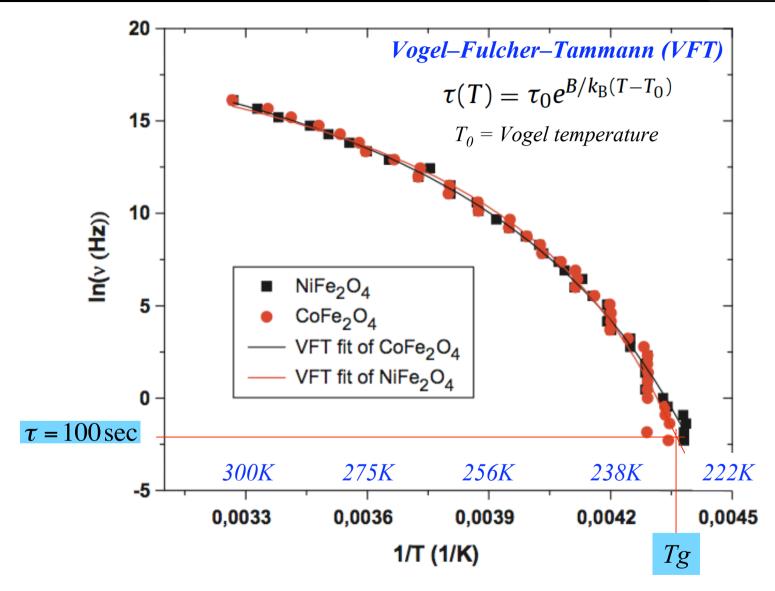


Fig. 6. ε' and $\tan \delta$ vs. temperature for the sample with 0.08 volume fraction of CoFe₂O₄ at several frequencies between 1 Hz and 1 MHz.

Fig. 7. VTF fittings of the β-relaxation of $CoFe_2O_4/PVDF$ and $NiFe_2O_4/PVDF$ with 0.08 of ferrite volume fraction.

$$\tau(T) = \tau_0 e^{B/k_{\rm B}(T-T_0)}$$

$$m = \frac{B/kT_{\rm g}}{(\ln 10)(1 - T_{\rm c}/T_{\rm g})^2}$$

 $High\ m = fragile, small\ m = strong$

Table 1

Vogel–Tammann–Fulcher and fragility parameters for the β -relaxation for α and β -PVDF and for the CoFe₂O₄/PVDF and NiFe₂O₄/PVDF nanocomposites with 0.08 of ferrite volume fraction.

Sample	$ au_0 (s^{-1})$	B (eV)	$T_0(K)$	$T_g(K)$	m
α-PVDF	5.96E-13	0.13	168.00	213.00	67.00
β-PVDF	3.00E-12	0.06	201.50	228.67	99.00
CoFe ₂ O ₄ /PVDF	4.93E-10	0.05	205.28	227.10	117.68
NiFe ₂ O ₄ /PVDF	9.29E-11	0.07	197.18	225.08	97.08

- RT hysteresis loops of CoFe₂O₄ and NiFe₂O₄ composites (Fig 8) similar to pure ferrites (no interaction with the polymer)
- CoFe₂O₄-ferrite hysteresis loop with Hc= 2,7 kOe and reaches saturation
- NiFe₂O₄ ferrite almost absence of hysteresis, remanence and coercivity (superparamagnetic?)
- Saturation magnetic moment Ms determined by Arrott plots increases linearly with ferrite content (Fig. 9) Well dispersed non interacting particles
- In-plane and out of plane M(H) loops similar \rightarrow random orientation (Fig 10)

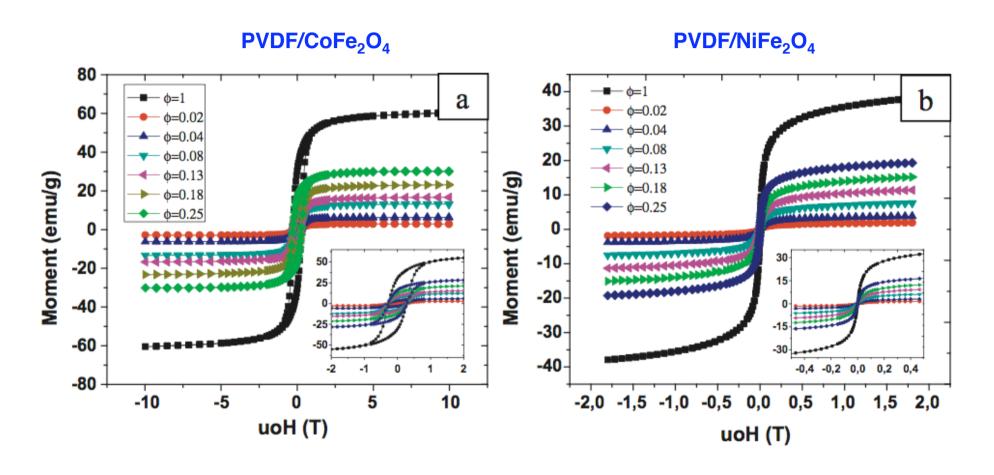


Fig. 8. RT hysteresis loops vs concentration

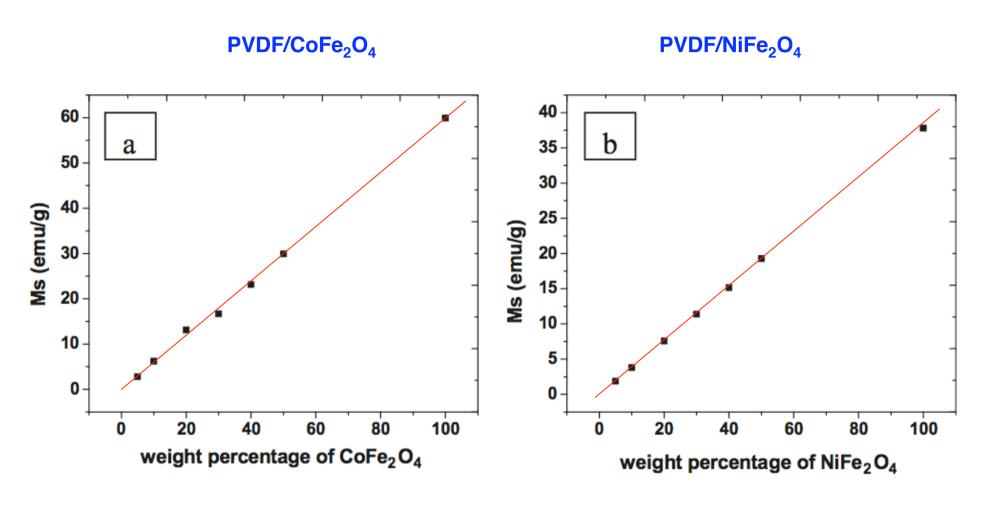


Fig. 9. RT Saturation magnetization vs concentration (Arrot plots)

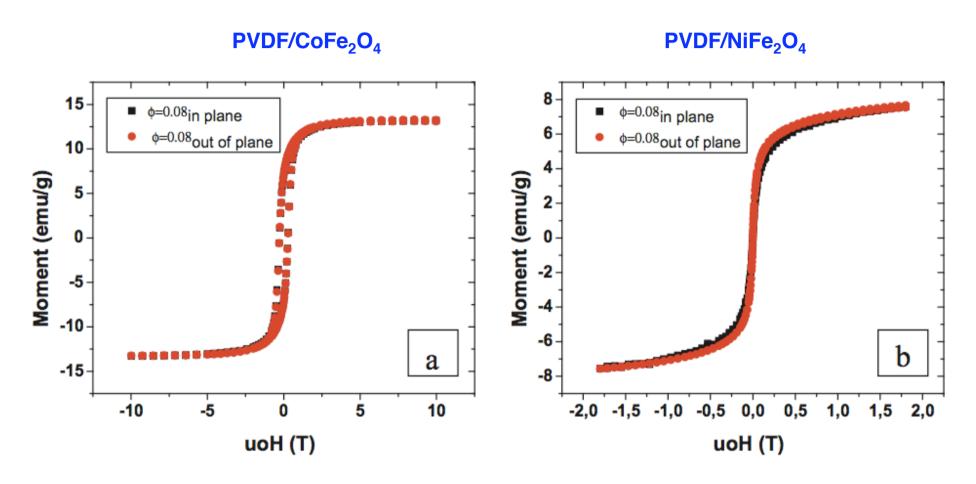


Fig. 10. RT in plane - out of plane hysteresis loops

- ZFC–FC curves for CoFe₂O₄ and NiFe₂O₄ are similar in shape (Fig 11)
- Blocking temperatures T_b (525 K CoFe₂O₄ and 275 K NiFe₂O₄)
 Maxima (450 K CoFe₂O₄, 225 K NiFe₂O₄)
 Broad distribution of sizes
- At RT CoFe₂O₄ is ferromagnetic, NiFe₂O₄ almost superparamagnetic
- From approach to saturation:
 CoFe₂O₄, K_{eff} = 1.58x10⁵ ergs cm⁻³, d≈30nm
 NiFe₂O₄, K_{eff} = 0.14x10⁵ ergs cm⁻³, d≈50nm
 agree with the sizes given by supplier

$$T_b = \frac{K_{eff} V}{25 k_B}$$

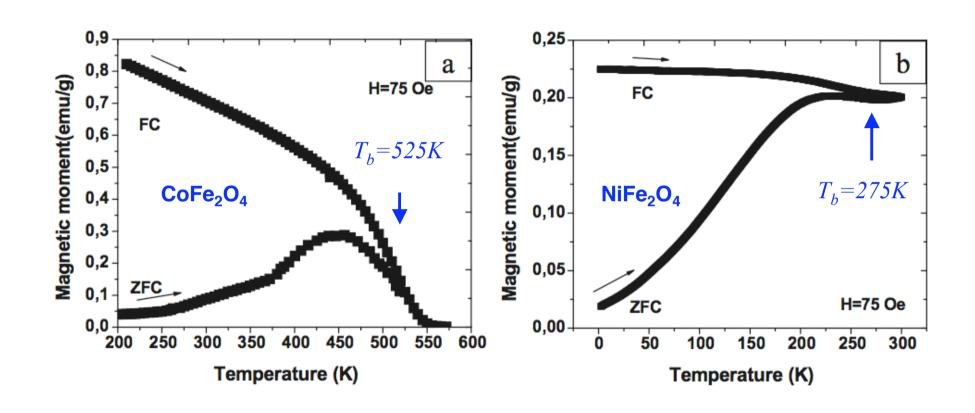


Fig. 11. ZFC-FC magnetization at 75 Oe

CONCLUSIONS

- CoFe₂O₄ and NiFe₂O₄ nanoparticles / PVDF composites were prepared.
- Nucleation of the β-phase of PVDF is more effective for the Co-ferrite nanoparticles
- The whole polymer is in ferroelectric phase for c= 0.02
- Larger Ni-ferrite content (c= 0.25) is needed for full ferroelectric phase
- The dielectric constant increases with increasing ferrite content
- The dielectric constant is larger for the Co-ferrite composites
- The β -relaxation of the amorphous part of the polymer is the same as the β PVDF obtained by stretching
- Ferrite nanoparticles are homogeneously distributed within the composite
- CoFe₂O₄ /PVDF composites exhibit hysteresis loop (coercivity = 2.7 kOe)
- NiFe₂O₄ /PVDF composites are quasi-superparamagnetic (FC and ZFC)

Thank you for your attention!