NEED FOR GUIDELINES SPECIFICALLY ADAPTED FOR THE TOXICITY TESTING OF NANOMATERIALS

<u>C Porredon</u>, J de Lapuente, D Ramos-López, L De Marzi, V Minatta, J González-Linares, N Brull and M Borràs

INTRODUCTION

- Nanomaterial production is increasing each year
- Nearly anything can be toxic at a high enough dose,
 - How toxic are nanomaterials at the potential concentrations at which they might be used?
- Any toxic effects of nanomaterials will be specific to:
 - Type of base material
 - Size
 - Shape
 - Coatings
- Nanotoxicity studies are focused on local effects
 - Each research group uses different
 - cell lines
 - culturing conditions
 - incubation times

INTRODUCTION

Best strategy to tests nanoparticles? No concerns

How are we testing nanomaterials?

- Standardized protocols for standard chemicals to assess the hazards of substances released into the environment
- Not always appropriate for nanomaterials → misleading effects

MODIFICATIONS OF SUCH PROTOCOLS ARE REQUIRED FOR NANOMATERIALS

OECD

 Spearheading a coordinated strategy focusing on an initial selection of nanomaterials and characterization properties

European Commission

- Seventh Framework Program (NMP.2012.1.3-3 Regulatory testing of nanomaterials)
- Developing a way of standardized and puting an order on the nanomaterial world
- QSAR ideas

• Why is it so problematic to define some protocols for NPs?

- Differences in size, shape, coating and chemical nature increase the difficulty level for a unique, linear and coherent understanding of the results.
- Lack of Reference materials:
 - REFNANO
 - ERDC-NIST workshop on nano-silver
 - NIST (National Institute of Standards and Technology, USA)
 - JRC-IRMM (Joint Research Centre—Institute for ReferenceMaterials andMeasurements, European Commission)

Table 1

Properties to characterise nanomaterials in media (stock solution) proposed by a range of authors.

Property	Oberdorster et al. (2005)	Powers et al. (2006, 2007)	Thomas et al. (2006)	Warheit (2008)	Klaine et al. (2008)
Size distribution	*	**	**	**	**
Agglomeration state/dispersion	*	**	*	**	*
Crystal structure	*	*	*	**	
Chemical composition	*	*	*		**
Surface area and Porosity	*	**	*	**	**
Surface chemistry		**	*	**	*
Surface charge		*	*	**	*
Shape and morphology		**	**		*
Dissolution/ Solubility		*	*		**
Physical/chemical properties (purity)		**		**	
Methods of synthesis				**	

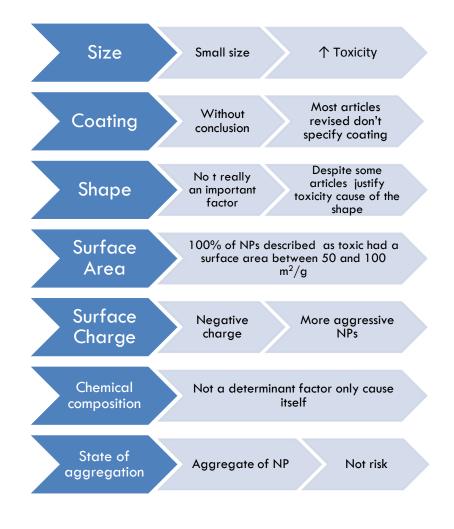
⁻ Lack of characterization in bibliography

- Essential to compare results and conclude
- How it is necessary to characterize?
- Several possible classifications for nanomaterials
- Difficulty for tracing and quantifying some nanomaterials within organisms or environment
 - -Need of labeling
- Toxicity studies of NPs use:
 - -Different cell lines
 - -Different incubation times
 - -Different range of concentration

-...

^{*:} Of importance; **: Priority.

NANOSARS


Hypothesis: The behavior of NPs is different according to its intrinsic properties

It should be possible to predetermine a model of toxicity according to these characteristics

			Si	ze				Coatin	g		Mc	orph	olo	gy/	Sha	pe	9	Surface Area (m2/g)																													emic posit		Diss	olution	Aggre	gation	Mag	netic
Toxicity NPs	< 4 nm	5 - 19 nm	20 - 49 nm	50 -99 nm	100 - 249 nm	> 250 nm	No coating	Aminosilane Thiolsilane	Gold	RE (rare earth)	Round/Spherical	Equiaxial	Irregular	Cubic / crystal	Rod	Tubular	< 10	10 - 25	25 - 50	50 - 100	> 100	Neutral	Cationic / Positive	Anionic / Negative	U	Metal oxides	Metals	PBS	Aqueous / Deionised water	Yes	N	Paramagnetic	No magnetic																					
Tox 1	16	24	24	24	12	0	88	4	4	4	68	0	0	5	23	5	0	33	33	0	33	0	95	5	4	36	60	33	67	100	0	96	4																					
Tox 2	7	21	36	14	21	0	100	0	0	0	43	7	21	14	0	14	20	20	30	10	20	0	100	0	25	63	13	0	67	60	0	75	25																					
Tox 3	14	0	43	29	0	14	100	0	0	0	50	25	0	0	0	25	20	20	40	0	20	50	50	0	14	43	43	0	75	50	0	71	29																					
Tox 4	60	0	40	0	0	0	100	0	0	0	60	0	0	20	0	20	0	0	0	100	0	0	50	25	20	20	60	0	100	0	100	20	80																					

NANOSARS

A FIRST APPROACH TO NANOTOXICOLGOY

- 1. In vitro tests of NPs taking into account:
 - 1. Size
 - Chemical nature
 - 3. Coating
- 2. To evaluate the possible:
 - 1. Cytotoxicity
 - 2. Genotoxicity
 - 3. Embryotoxicity
 - 4. Internalization

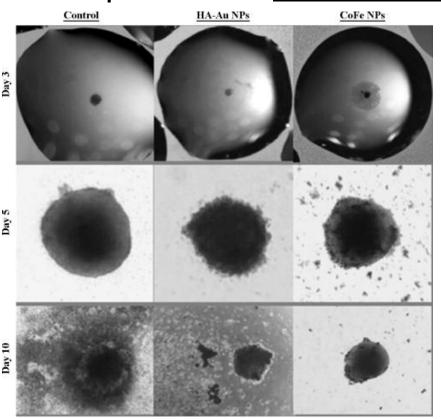
EMBRYOTOXICITY

Embryotoxicity of cobalt ferrite and gold cobalt nanoparticles: A first in vitro approach Claudia Di Guglielmo, David Ramos López, Joaquín De Lapuente, Joan Maria Llobet Mallafre, Miquel Borràs Suàrez.

Reproductive Toxicology 30 (2010) 271-276.

	Cytotoxicity a	ssay: MTT test	Embryonic Stem Cell Test (EST)			
	IC ₅₀ 3T3	IC ₅₀ D3	ID ₅₀ D3	Classification		
17 ± 3 nm cobalt ferrite NP covered with gold, aminosilanes and thiol-silanes NP	3518.75	3585.35	1913	Non-embryotoxic		
12 nm gold NPs coated with 5kDa MW Hyaluronan	2931.85	852.74	166.38	Weakly embryotoxic		
17 ± 3 nm cobalt ferrite NP covered with aminosilanes and thiol-silanes	680.95	276.02	39.45	Weakly embryotoxic		
CoFe ₂ O ₄	243.91	20.05	36.86	Weakly embryotoxic		
HAuCl₄•3H ₂ O	7.69	7.7	4.96	Weakly embryotoxic		
5-FU	0.20	0.10	0.03	Strong embryotoxic		
5-FU control	0.20	0.10	0.02	Strong embryotoxic		

Weakly embryotoxic:


gold salt > cobalt ferrite salt > cobalt ferrite NPs coated with silanes > gold nanoparticles coated with hyaluronic acid.

EMBRYOTOXICITY

Embryotoxicity of cobalt ferrite and gold cobalt nanoparticles: A first in vitro approach Claudia Di Guglielmo, David Ramos López, Joaquín De Lapuente, Joan Maria Llobet Mallafre, Miquel Borràs Suàrez.

Reproductive Toxicology 30 (2010) 271-276.

Standard protocol for EST: unsuccessful with NPs.

NPs allow the bodies to be formed.

NPs are laid on the bodies.

Embryonic bodies exposed to NPs do not adhere after day 5 and do not extend properly to the surface of the plate

The shape of the bodies appears irregular and the diameter is smaller if compared to the controls.

- We addressed the suitability of exposing the cells to the toxic agent only for 5 days.
- Confirmation of the validity of this solution:
 - A parallel test with the positive control 5-FU gave confirmation:
 - The ID₅₀ concentrations obtained were equivalent.

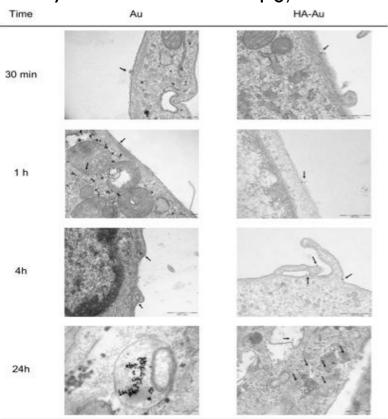
IN VITRO GENOTOXICITY AND CHRONIC CYTOTOXICITY

Chronic cytotoxicity

- MTT assay
- BALB/c 3T3 cells
- 10 days on exposure to:

	IC ₅₀
Gold salts	7.67 µg/mL
12 nm gold NPs coated with 5kDa MW Hyaluronan	3935.81 μg/mL
12 nm gold NPs	1349.77 μg/mL

Genotoxicity

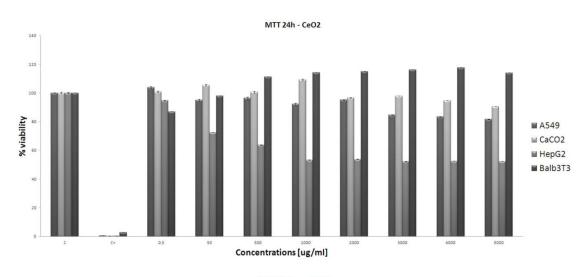

- Comet assay
- BALB/c 3T3 cells
- Exposure
 - To a subtoxic concentration of:
 - 500 µg/mL for NPs
 - 5 µg/mL for gold salts

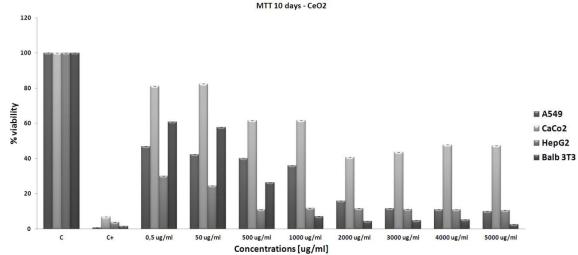
		DNA damage	;
	Gold salts	Coated gold NPs	12 nm gold NPs
1 <i>5</i> min			\uparrow
30 min			↑
4 h			$\uparrow \uparrow$
24 h		↑	↑ ↑
48 h	1	↑	$\uparrow \uparrow$

IN VITRO CELL INTERNALIZATION

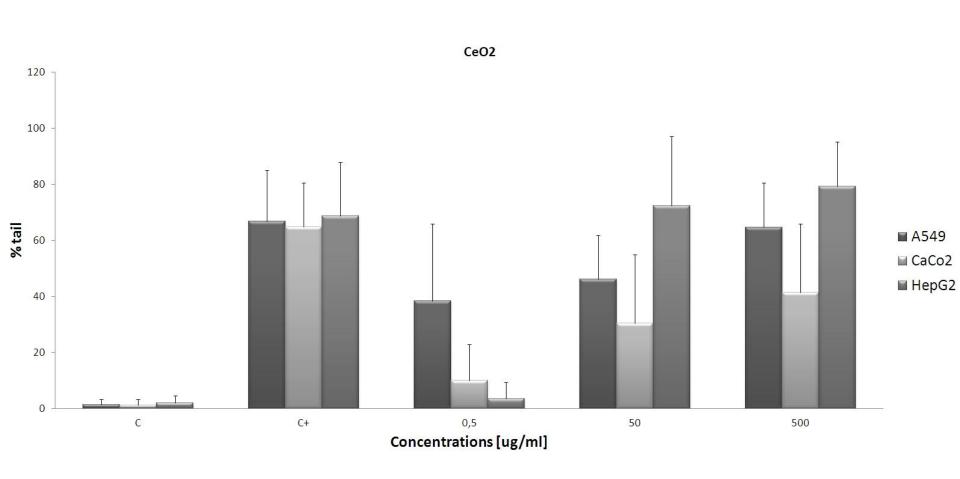
Transmission Electron Microscopy (TEM)

- BALB/c 3T3 cells
- Sub-cytotoxic dose of 500 $\mu g/mL$ of NPs

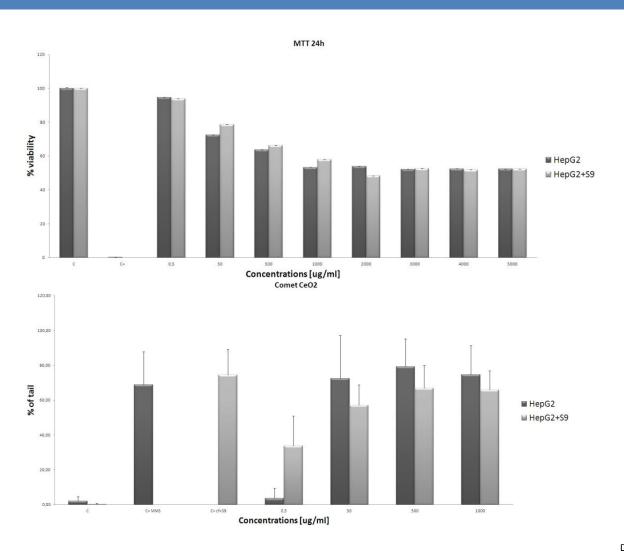


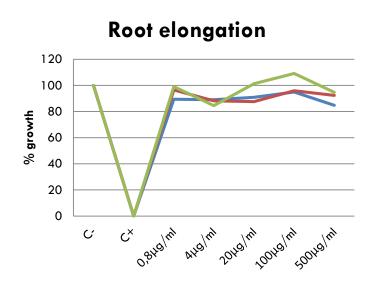

Confocal microscopy

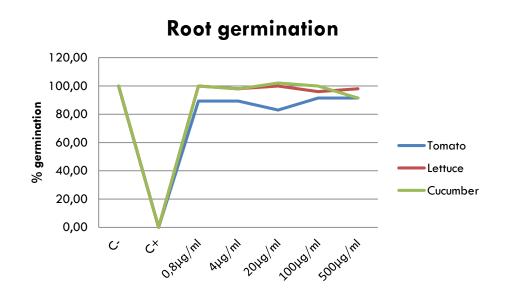
- BALB/c 3T3 cells
- Sub-cytotoxic dose of 500 $\mu g/mL$ of NPs
- Exposure for:
 - 24 h
 - 4 h
 - 1 h
 - 30 min


	Endosomes	Lysosomes
HA-AuNPs	\uparrow (up to 24h) \rightarrow \downarrow	↑ (↓ with time)
AuNPs	≈	↑ (sp at 4h)

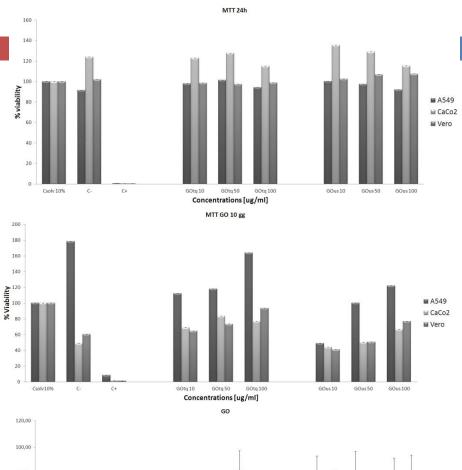
Cytotoxicity: No acute toxic effect




CERIUM OXIDE NPs Genotoxicity: Very high toxic response



Effect regarding metabolic activation


Ecotoxicity: Seed germination test

Smaller seeds showed a higher level of toxic effects than the bigger ones at the same concentration of nanoparticles

GRAPHENE OXIDE NPs

There are high differences between exposition periods:
Chronic>Subacute>Acute

100,00 - 80,00

Genotoxic dose-response depend on the nanoparticle sinthesys

IN VIVO

Inhalation exposure to three types of gold NP for 21 days (Rattus novergicus)

Systemic toxicity

- No rat showed severe clinical signs
- All animals gained weight during exposure
- Blood chemistry analysis:
 - all values were within reference values
- Hematology parameters:
 - All values were within reference values
 - No inflammatory response was observed after 3 weeks of exposure, in any group of treatment.
- Leukocytic formula:
 - 100 nm gold NP 7.5 mg/day group:
 - † lymphocytes
 - ↓ granulocytes

Malondyaldehid (MDA) determination

Table IV: MDA results											
		Plasma	Lung	Liver							
Exposure group	Time	µmols MDA/L plasma	nmols MDA/g lung	nmols MDA/g liver							
		Mean ± S.D.	Mean ± S.D.	Mean ± S.D.							
12AuNP 7,5 mg/day	Initial	6,601 ± 2,47	-	-							
12Aunr 7,5 mg/uay	Final	10,030 ± 2,51	157,553 ± 30,32	283,534 ± 51,99							
12AuND 2.75 mg/dov	Initial	5,923 ± 1,30	-	-							
12AuNP 3,75 mg/day	Final	6,741 ± 2,84	189,770 ± 21,78	198,815 ± 74,36							
12AuNP 1,875 mg/day	Initial	7,339 ± 1,50	-	-							
12Aune 1,075 mg/uay	Final	6,381 ± 1,90	191,539 ± 35,23	236,898 ± 88,60							
HAAuNP 7,5 mg/day	Initial	5,247 ± 0,80	-	-							
HAAUNF 7,5 mg/day	Final	9,889 ± 2,42	194,554 ± 53,976	230,384± 59,05							
LIA AUND 2.75 mg/dov	Initial	5,633 ± 0,89	-	-							
HAAuNP 3,75 mg/day	Final	9,737 ± 2,32	191,993 ± 56,73	231,252 ± 58,43							
HAAuNP 1,875 mg/day	Initial	8,618 ± 0,79	-	-							
TIAAUNF 1,075 Hig/day	Final	7,056 ± 1,88	184,563 ± 41,54	211,239 ± 36,22							
1004 uNP 7.5 mg/day	Initial	5,683 ± 1,50	-	-							
100AuNi 7,5 mg/day	Final	9,659 ± 3,06	194,554 ± 53,976 191,993 ± 56,73 184,563 ± 41,54 188,879 ± 33,98	272,639 ± 46,10							
00AuNP 7,5 mg/day 00AuNP 3,75 mg/day	Initial	8,216 ± 1,84	-	-							
100Auivi 3,75 mg/day	Final	6,974 ± 1,50	185,576 ±49,63	240,176 ± 71,57							
100AuNP 1,875 mg/day	Initial	7,372 ± 0,35	-	-							
	Final	8,273 ± 2,24	205,737 ± 53,02	222,498 ± 72,19							
Control	Initial	6,268 ± 0,40	-	-							
CONTROL	Final	$7,800 \pm 2,33$	182,050 ± 24,75	232,406 ± 57,02							

IN VIVO

Inhalation exposure to three types of gold NP for 21 days (Rattus novergicus)

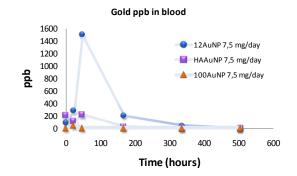
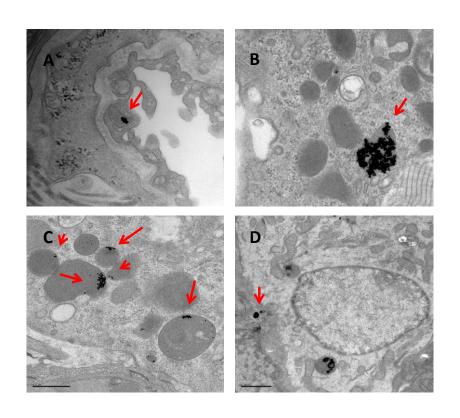

Comet assay


Table VI: % tail i	ntensity
Exposure group	Mean ± S.D.
12AuNP 7,5 mg/day	27,51 ± 11,99
12AuNP 3,75 mg/day	8,379 ± 8,16
12AuNP 1,875 mg/day	14,390 ± 11,62
HAAuNP 7,5 mg/day	13,361 ± 12,78
HAAuNP 3,75 mg/day	8,261 ± 8,64
HAAuNP 1,875 mg/day	9,041 ± 10,33
100AuNP 7,5 mg/day	20,112 ± 12,97
100AuNP 3,75 mg/day	16,142 ± 15,09
100AuNP 1,875 mg/day	10,890 ± 10,37
Control	12,568 ± 9,97

- Increased percentage of DNA in tail in high dose groups of 12AuNP and 100AuNP
- Dose-dependent for 100 AuNP treatment

Tissue gold content determination


		Table VII: ppb of gold in tissue													
Exposure group	Testicle	Olfactory bulb	Lung	Liver	Lymph node	Spleen	kidney	Pancreas	Ovary						
12AuNP 7,5 mg/day	<15	<52	49501	<9	<62	<20	<44	<53	<17						
HAAuNP 7,5 mg/day	<12	<43	33894	<13	<46	<18	<61	<27	<38						
100AuNP 7,5 mg/day	<9	<28	1806,1	<14	<35	<14	<28	<32	<23						

IN VIVO

Inhalation exposure to three types of gold NP for 21 days (Rattus novergicus)

- □ Predominantly found in
 - macrophage cells in the lung
 - inside vesicles

CONCLUSIONS (1/2)

- Lack of standard procedure protocols for nanotoxicology.
- The standard tests for chemicals are not always useful for these kinds of materials.
- The great variability between NPs makes difficult to establish a consensus about which methods are really useful to test their toxicity.
- Some of the most important physicochemical properties that must be characterized:
 - Size
 - Solubility
 - Surface area
 - Surface charge
 - Surface composition
 - Agglomeration/Dispersability
 - Shape
 - Crystallinity
 - Chemical composition
- It is necessary:
 - Get consensus about how to classify nanomaterials into categories
 - Use reference materials to compare toxicity results in different assays
 - Reach agreement on a battery of *in vitro* screening tests.

CONCLUSIONS (2/2)

- Taking into account our experience:
 - lacktriangledown Gold NPs affect cell growth only at very high concentrations, as IC₅₀ values demonstrated.
 - → Gold NPs were considered as non-cytotoxic for 3T3 cells.
 - Cerium oxide and graphene NPs revealed no acute toxic effect, but can produce a decrease in % of viability after a chronic effect.
 - NPs have shown to be less cytotoxic and less embryotoxic than their salt counterparts, and this lesser toxicity is modulated by the kind of biocompatible coating applied.
 - NPs resulted to be genotoxic starting from their internalization times
 - Uncoated gold nanoparticles, which are internalized more quickly and efficiently, cause DNA damage after 4 hours of incubation
 - Gold NPs coated with hyaluronan induce damage later in time, after 24 hours
 - Cerium oxide NPs alterate the DNA structure in the in vitro tests inducing genotoxic effects.
 - Graphene Oxide NPs obtained from different synthesys showed different genotoxic responses.
 - DNA damage may be originate from indirect mechanisms
 - Lysosomes levels rised following time, indicating that cells prepared themselves to hold nanoparticles.
 - Cerium oxide NPs in the presence of a well known oxidant compound are able to protect the cells from oxidative stress damages due to its chemical nature.
 - Chronic in vivo study after inhalation exposure showed:
 - No systemic toxicity
 - Increase in the number of lymphocytes for 100 nm gold NPs
 - Oxidative stress was detected in animals treated with higher doses of gold NPs.
 - 100 NPs showed a dose-response effect regarding genotoxicity
 - All gold NPs were able to cross the respiratory barrier, reflecting different patterns of distribution regarding size and coating:
 - Coating is improving the distribution of NPs
 - Smaller gold NPs cross easier into the blood
 - Gold NPs were only detected in the lung, mainly located in macrophages within cellular vesicles and rarely in the cytoplasm

Thank you

Please, feel free to contact me: cporredon@pcb.ub.cat